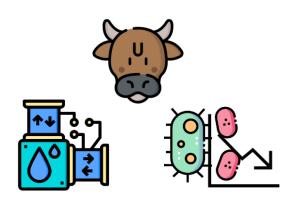
Implementation of techniques for ensuring microbiological water quality of outdoor watering troughs in cow-calf farms: A literature review

MSc student. Heidi Dayana Pascagaza Rubio


Dr. Sébastien Fournel

Dr. Stéphane Godbout

Ing, M. Sc. Joahnn H Palacíos-Ríos

Water properties in the source or in troughs

Organoleptic properties

Odor, flavor

Physical properties

T°, pH, total dissolved solids, conductivity

Chemical properties

Nitrites, iron, arsenic, hydrogen sulfide, chloride

Biological properties

❖ Total coliform bacteria, E. coli bacteria, cyanobacterial toxins

Parameter	Expected values for cattle consumpti on	Human Drinking Water values (Canada)	Possible Cattle Problem values	Possible cattle problems
Total coliform bacteria/100 mL	Under 200	None	Over 1 million	*Fecal contamination
E. Coli bacteria/100 mL ●	Less tan 1	None	Over 1	Risk of product (milk, meat), cross contamination in food chain Water contamination, source of human infection
Fecal strep/100 ml	Less than 1	None	Over 3	Fecal contamination
Cyanobacteri al toxins	None	None	None	Poisoning, sudden death, bloody diarrhea, convulsions

- Expected values for cattle water consumption
- Based on human Drinking water standards from Canada (Guidelines for Canadian Drinking Water
- Limit values that may represent cattle health problems. Adapted from: Livestock water quality: A field guide for cattle, horses, poultry and swine (Andrew. O. 2016)

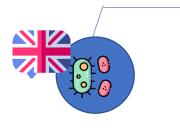
Global context

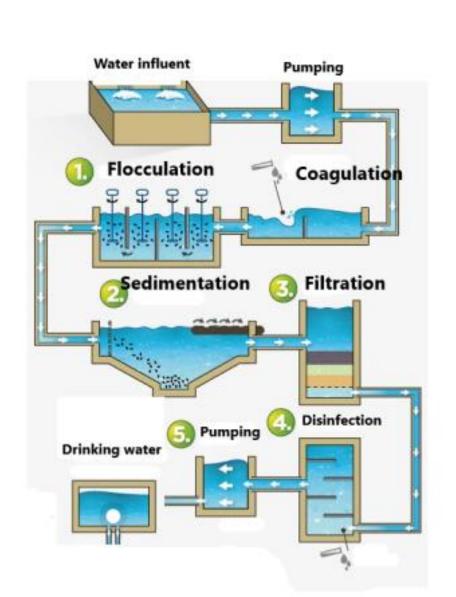
Foodborne
illness:
1.6 million of
food-born illness
4000
hospitalizations
150 deaths

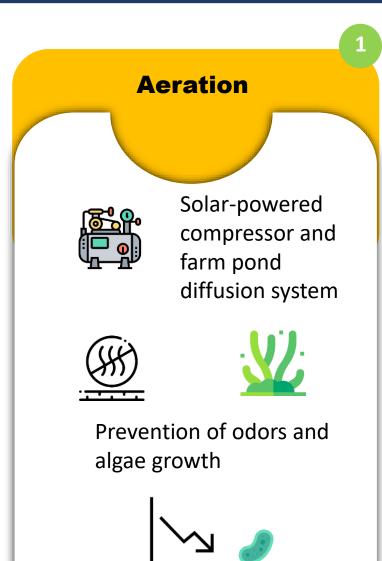

Governement of

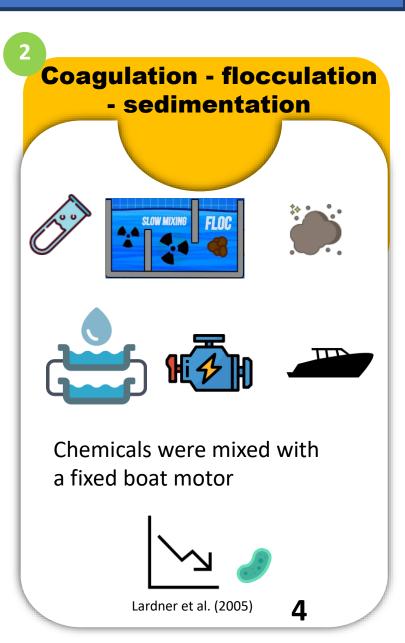
Canada (2016)

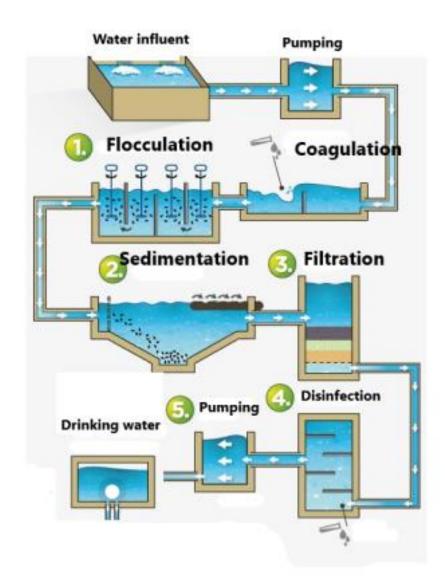
Jokinen et al., (2011)


In the Oldman river watershed (Alberta) was detected the presence of E. coli O157:H7 fingerprints from cattle and water isolates.


2012: Canadian XL foods E. coli case resulting in the largest beef recall in Canadian history


Water troughs on caw-calf farms, showed on average 20% of samples were contain E. coli O157


Smith et al. (2008)


Drinking water treatment and case

Corkal et al. (2013)

Filtration

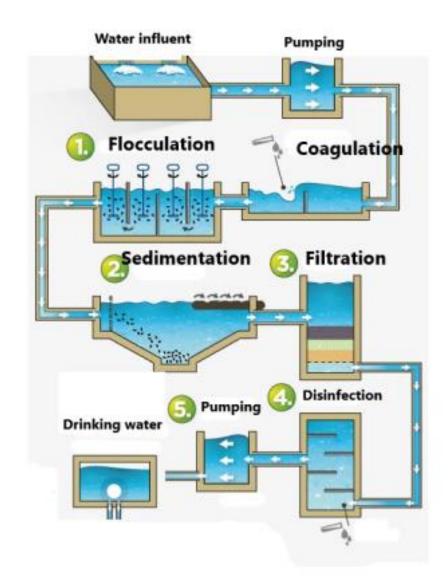
Coagulant dosage

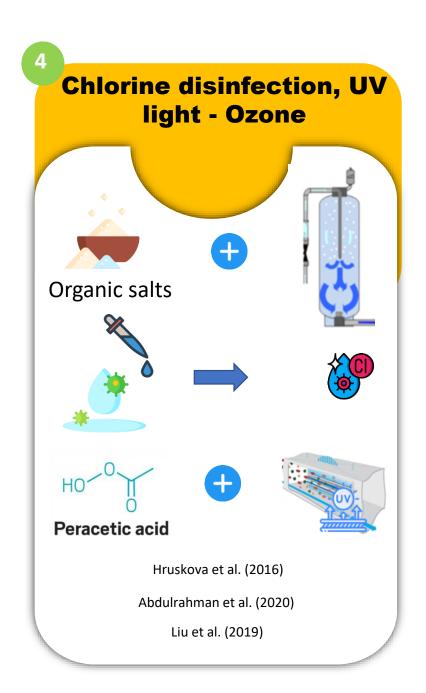
Associated with the surface area of the filter sand

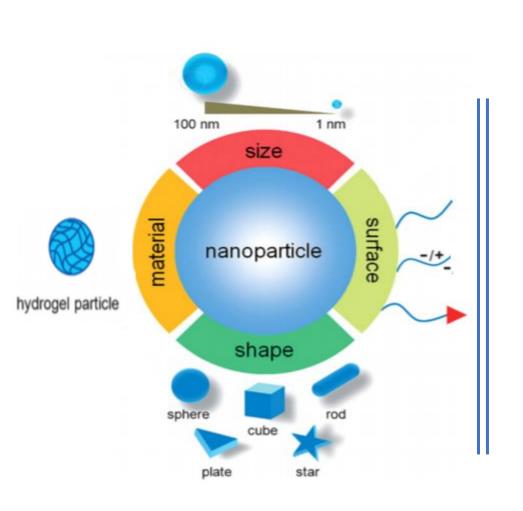
Li et al. (2012)

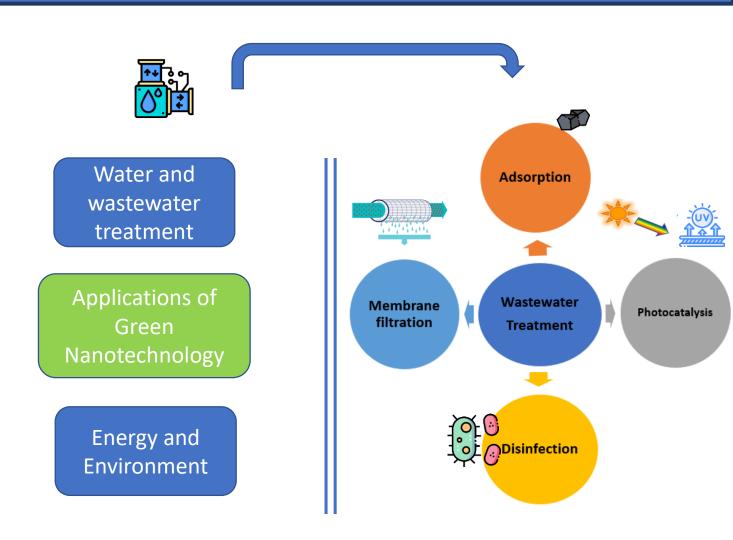
Membrane filtration - biofiltration

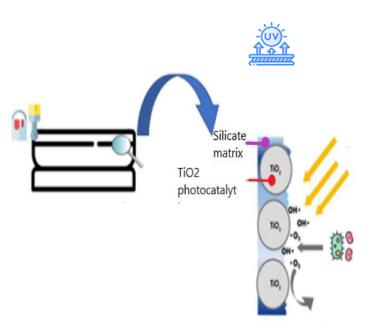
Membrane filtration



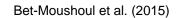

Biofiltration

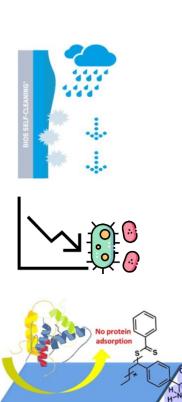



Hooper et al. (2019)



Nanotechnology in water treatment





Nanoparticles

Application	Properties		
Photo-catalysis	Particularly in anatase form under ultraviolet light (UV)		
Antifouling properties	Under the influence of both nanoparticles and light		
Biocidal properties	Growth inhibition, cell inactivation		
Hydrolysis catalyst	Super hydrophilicity, sterilizing, deodorizing, antifouling chemical resistant		

References

- Guideline for Canadian drinking water quality
- ❖ Government of Canada. 2016. Yearly food-borne illness estimates do Canada.
- ❖ Jokinen C., T.A. Edge b, S. Hoa, W. Koning c, C. Laing a, W. Mauro a, D. Medeiros d, J. Miller e, W. Robertson d,1, E. Taboada a, J.E. Thomas f, E. Topp g, K. Ziebell h, V.P.J. Gannon a. 2011. Molecular subtypes of Campylobacter spp., Salmonella enterica, and Escherichia coli O157:H7 isolated from faecal and surface water samples in the Oldman River watershed, Alberta, Canada. Water research 45. 1247 − 1257.
- Smith. R.P. Paiba. G. A:, Ellis-Iversen. J. 2008. Short communication: Turbidity as an indicator of Escherichia coli presence in water troughs on cattle farms. J. Dairy Sci. 91:2082-2085.
- Corkal D., Scgutzman. W. C., Hilliard. C.R. 2013. *Rural water safety from the source to the on-farm tap*. Journal of toxicology and Environmental Health. Canada.
- ❖ Lardner. H. A. Kirychuk. B. D., Braul. L. Willms. W. D., Yarotski. J. 2005. The effect of water quality on cattle performance on pasture. Australian Journal of Agricultural Research. 97-104
- ♦ Hooper J., Funk. D., Bell. K:, Noibi. M., Vickstrom. K. Shculz. C., Machek. E., Huang. C.H.2019. Pilot testing of direct and indicrect potble water reuse using multistage: ozone biofiltration without reverse osmosis. Water research. USA.
- Hruskova. T., N. Sasakova., Bujdosova. Z., Kvokacka. V., Gregova. G., Verebova. V., Valko-Rokytovska. M., Takac. L. 2016. Disinfection of potable water source on animal farms and their microbiological safety. *Veterinarni Medicina*, 61, 2016 (4): 173–186
- Abdulrahman H. H., Bhatt. T., Nyitrai. J., Dai. N., Lauren Sassoubre. L. 2020. Inactivation of E. coli, Enterococcus spp., somatic coliphage, and Cryptosporidium parvum in wastewater by peracetic acid (PAA), sodium hypochlorite, and combined PAA-ultraviolet disinfection.
- ❖ Bet-moushoul. E., Mansourpanah. Y., Farhadi.Kh., Tabatabaei. M. 2015. TiO" nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes. Chemical Engineering Journal 283 (2016) 29–46