

STRATEGIES TO IMPROVE INDOOR CONDITIONS IN AVIARY LAYING HENS PRODUCTION SYSTEMS

PLAN

- i. Introduction
- ii. Objective
- iii. literature review
- iv. Methodology
- v. Results
- vi. Conclusions

I. INTRODUCTION

2007: Humane Society International – Canada:

Confined laying hens awareness campaign with Canadian municipalities Transition from conventional systems to alternative systems (enriched cages, cage-free)

2036
Complete transition

2007 2015 2021

Conventional systems banned in Québec

CHALLENGES TRANSITION TO ALTERNATIVE SYSTEMS

Parameters	Systems			
raiailleteis	1	2	3	
Welfare Workers health	++	++	- ++	
Air quality[NH₃, dust, bio -aerosols]	±	+	++	
Egg quality	±	++	++	

1 = Cage-free

2 = Enriched-cages

3 = Conventional cages

Ventilation control

Welfare, workers health, and sustainability

Manure management

Litter management

AIR QUALITY

OBJECTIVE

To select and evaluate practices or techniques to improve air quality, welfare and workers health in cage-free production systems of Québec

LITERATURE REVIEW

Practices and techniques to improve air quality (NH₃, dust, and bio-aerosols):

- Ventilation
- Type of litter
- Litter management
- Type of feed and diet
- Litter amendments
- Electrostatic precipitation
- Water or vegetal oil sprinkling
- Heating floor

Practices and techniques selected:

- 1. Litter amendment
- 2. Heating floor
- 3. Oil-emulsion sprinkling
- 4. Decreasing of litter surface area

DECISION SUPPORT GRID

- Technical
- Economic
- Agronomic
- Social and health
- Environment
- Use of Resources

Laboratory-scale assessment:

- 1. Litter amendment
- 2. Heating floor
- 3. Oil-emulsions sprinkling

- 80 g of litter
- [NH₃]

METHODOLOGY

EVALUATION - EXPERIMENTAL FARM

- IRDA, Deschambault-Quebec
- 12 independent rooms
- Single-level aviaries
- 12 Laying hens (Lohmann LSL-Lite)
- Animal density was 1115 cm² per hen
- 2 lots of 8 weeks
- 3 treatments + Ctrl x 3 replicas

Treatments

L-17% = Decreasing of litter surface area

HF+OES = Heating floor + Oil-emulsion sprinkling

AD+OES = Biochar + Oil-emulsion sprinkling

OES = Oil-emulsion sprinkling

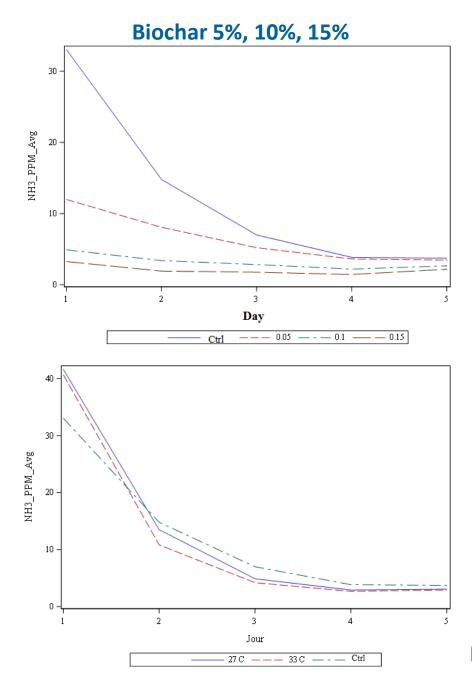
Ctrl = Traditional aviary system without

any treatment

EVALUATION - EXPERIMENTAL FARM

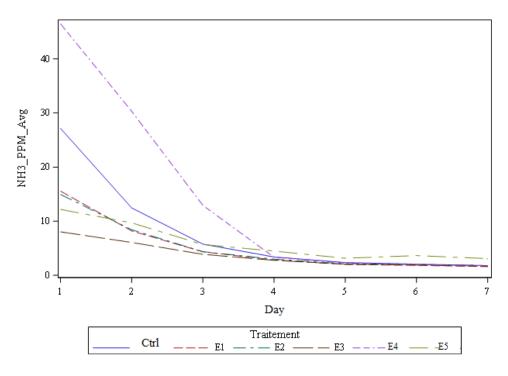
Parameters evaluated

- Performance of the production system: weight gain, water and feed consumption, laying rate
- **Air quality**: GHGs, NH₃, PM_{2.5}, PM₁₀, bio-aerosols
- **Eggs quality**: % of clean eggs, cracked or broken eggs
- Welfare: behavior, health and body condition
- Physicochemical characteristics of the litter:
 dry matter, organic matter, pH, Nt, N-NH₄, P, K,
 Ca, Mg



EVALUATION -COMMERCIAL FARMS

Parameters evaluated


- **Air quality**: GHGs, NH₃, PM_{2.5}, PM₁₀, bio-aerosols
- Physicochemical characteristics of the litter : dry matter, organic matter, pH, Nt, N-NH₄, P, K, Ca, Mg

RESULTS:

LABORATORY-SCALE ASSESSMENT

Oil-acid-emulsions

RESULTS: EXPERIMENTAL FARM

NH₃ and GHGs emissions

Effect	DDL num.	Value F	Pr > F	Value F	Pr > F	Value F	Pr > F	Value F	Pr > F
			CH ₄		CO ₂		N ₂ O		NH ₃
Treatment	3	2,70	0,14	0.35	0,79	0,51	0,68	1,53	0,33
Week	7	18,46	<0,01	35.65	<0,01	9,32	<0,01	3,48	0,01
Week*trt	21	1,18	0,36	1.04	0,43	0,91	0,59	0,68	0,82

RESULTS:

EXPERIMENTAL FARM

Dust reduction (%)

Treatment	Lot 1			Lot 2			
	PMT	PM10	PM4	PMT	PM10	PM4	
L-17%	77,6	75,1	73,7	60,2	54,5	50,9	
HF+OES	97,9	98,3	97,3	95,0	94,7	91,6	
AD+OES	92,4	94,3	91,9	89,1	89,9	86,9	
OES	ND	ND	ND	83,7	83,7	82,6	

L-17% = Decreasing of litter surface area

HF+OES = Heating floor + Oil-emulsion sprinkling

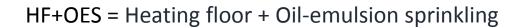
AD+OES = Biochar + Oil-emulsion sprinkling

OES = Oil-emulsion sprinkling

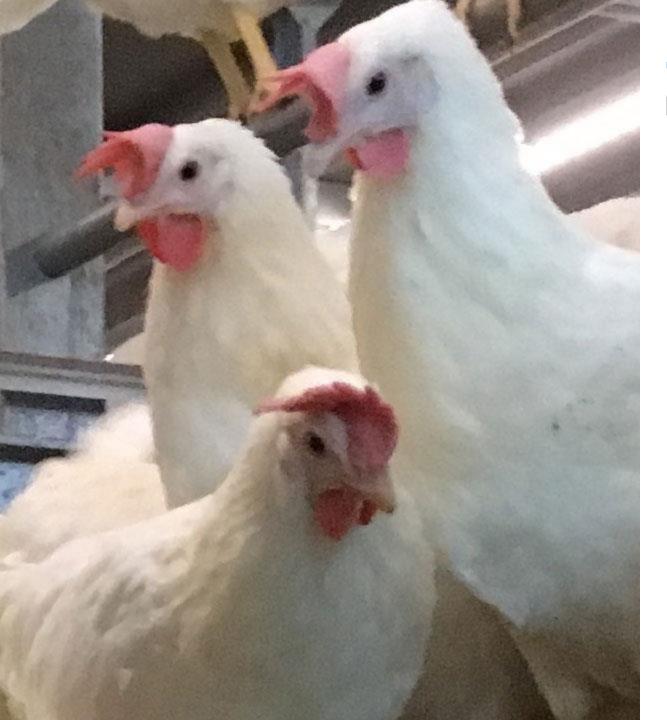
Performance of the production system

EXPERIMENTAL FARM

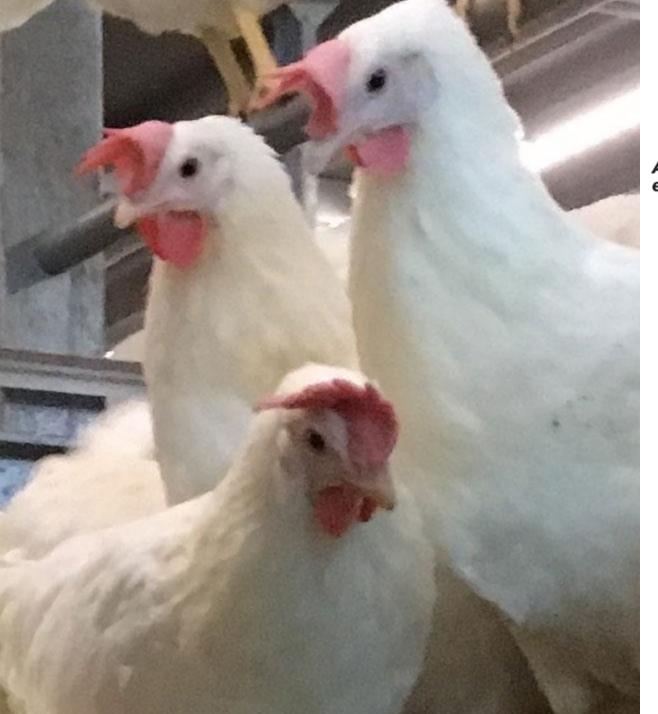
Parameter/Treatment	Ctrl	T-17%	HF+OES	AD+OES	OES
Initial weight (g)	1438	1440	1440	1438	NDa
Weight in the end of Lot 1(g)	1635	1632	1671	1669	ND^a
Weight in the end of Lot 2(g)	1711	1728	1745	1759	1747
Water consumption L1(ml/day)	186	166	188	191	ND
Water consumption L2(ml/day)	200	183	200	216	204
Feed consumption Lot 1 (g)	1289	1333	1283	1281	ND
Feed consumption Lot 2 (g)	1375	1401	1407	1388	1369
Egg production Lot 1	12	12	12	12	ND
Egg production Lot 2	12	12	12	12	12
% proper eggs Lot 1	81	79	83	77	ND
% proper eggs Lot 2	86	86	88	82	82


qc.ca

RESULTS: COMMERCIAL FARM



CONCLUSIONS


Selection of techniques to improve:

- Air quality (NH₃, dust and bioaerosols concentration)
- Welfare, workers health, and the performance of the production system

The best scenario:

- Oil emulsion sprinkling combined with litter absorbent or heating floor was proven efficient to reduce aerosolized particle concentrations and NH₃
- Feasibility of the implementation :
- Technical and economic study in progress

ACKNOWLEDGMENT

Agriculture, Pêcheries et Alimentation

Québec **

Agriculture and Agri-Food Canada

CENTRE DE RECHERCHE INSTITUT UNIVERSITAIRE DE CARDIOLOGIE ET DE PNEUMOLOGIE DE QUÉBEC

Institut de recherche Robert-Sauvé en santé et en sécurité du travail

THANKS!

QUESTIONS?